

Extreme Component Based Development

Rob van der Veer

Abstract

This paper describes improvements in the
software development process at Sentient
Machine Research, making use of Extreme
Programming ideas. The relevance of Extreme
Programming for creating and reusing
components is discussed, by showing how its
principles have been applied in solving the
problems Sentient had with adopting
Component Based Development.

Keywords: industry, extreme programming,
component-based development, reusability,
middleware, refactoring

1 Introduction

Sentient Machine Research is a Dutch
company, currently counting 25 employees,
specialized in bringing artificial intelligence
technology to the market by creating tools for
data analysis and pattern recognition. Because
of the trendy market, cutting-edge applications,
continuously evolving AI technology, and
uncertain results from research and prototyping,
requirements vary constantly. This continuous
change and our substantial investment in
technology create high standards for the
software development process, especially
regarding reuse.

A few years ago, we have started to take a
serious look at our software design process,
focusing on the setup of a component library
and applying Component Based Development
(CBD) principles. Since then, many
improvements have been made with respect to
infrastructure, organizational structure and
methodologies. The European Software and
Systems Initiative (ESSI) has funded part of this
work.

This paper describes the problems we have
encountered in applying CBD and how we
solved them using principles from Extreme
Programming (XP) [1]. XP is a discipline of
software development, designed to work with
projects that can be built by teams of two to ten
programmers. None of the XP ideas are new.

The innovation is that all practices support each
other and are executed thoroughly.

The next sections each discuss a main problem
and the way we solved it, illustrating how well
XP and CBD can be combined, despite of some
aspects that do not seem to match.

2 Library components bottleneck

At first, the creators of a component for our
library became so-called 'owners': all
component changes had to be done by them.
This rule was introduced because we decided
that the risk of breaking our legacy components
was too high if other developers would perform
changes. When a change was required, this
situation had one or more of the following
undesired effects:

 Interference with the projects the owners
were working on

 Project delay as a result from waiting for the
owners to create time

 Rushed change by the owners - often
because of lacking motivation (it was not
their project) or because of the time stress
on their own projects.

Other developers decided to perform the
changes and did not integrate them in the
library component because of the risk they
would break it - the new features of the
component were lost for the library.

If the original owners were not working for the
company anymore, the necessary knowledge
for applying the change had been lost. Leaving
programmers are a problem when restricted
code ownership is applied.

It has been shown by others that collective
code ownership, which would solve these
problems, is a feasible goal [1], providing the
software complies with certain rules:

 High adaptability. The result of frequent
refactoring, pair programming and
complying with coding standards (see
below).

 Software is bundled with testcode (see
below). Automatic testcode is essential to
reduce the risk of breaking a component

when applying a change. In addition it
serves as documentation of the use cases.

The illustrated problems made us decide to
adopt collective code ownership based on the
ideas from Extreme Programming; component
changes can be done by any programmer,
unless the changed component is tested and
the code is integrated right away, to reduce the
chance of multiple changes happening at the
same time. Hence, we first added the
requirement for a component to be bundled with
testcode for full functionality testing, adopted
pair programming (see quality section), created
code standards, and started training developers
to write more readable code. Next we had to
further address component adaptability, which
already was a problem in our company, even
for the owners themselves.

3 Insufficient adaptability

Components are hard to adapt, because
preserving component quality is essential –
developers need to rely on library components
in their project. So whenever a component was
modified in our library, changes to the existing
code were kept to a minimum, reducing the risk
of introducing bugs. Typically, this resulted in
bad structure (spaghetti code), where the new
feature did not really fit in and redundant code
was created. If the component is seen as a
machine, this way of writing new code can be
seen as attaching another machine on the
outside of the existing one. The changes
through time could often be identified in our
code by looking at subclasses that were
created to carefully introduce changes –
resulting in unreadable code.

Components adaptibilty is important because
reusable components are subject to change in
every project in which they are reused.
Furthermore, when creating components to be
used in a software system, the requirements
not only change when system behavior has to
change, but also when system design changes.
Therefore component requirements are often
altered during the development process - when
the customer and when the developers want
the system to behave differently (for example
during refactoring).

In his book [1], Beck talks about the schoolbook
example of software change costs rising
exponentially over time. Because of modern
tools and methodologies, software engineering
has somewhat reduced this exponential
increase. He states that the only way of making
the costs rise very slowly is to put an emphasis

on continuous refinement of the program design
(i.e. refactoring). A component probably has to
be changed long after the project in which it
originated was finished, and maybe even by
other developers, so keeping the cost of
change low over time is essential.

3.1 Refactoring

Repeatedly applying changes to our
components has resulted in unreadable
structure and because of that, bad adaptability -
even for the original developers. Extreme
Programming states that after or during a
change, refactoring [2] has to be applied when
clear structure or adaptability is at risk. If so,
you are doing more work than actually needed
that moment, but it ensures you can add the
next features in a reasonable amount of time.

Refactoring is the process of taking an object
design and rearranging it in various ways to
make the design more flexible and reusable.
There are several reasons for doing this;
efficiency and maintainability being probably the
most important. Refactoring eliminates
redundancy and ugliness, and increases
simplicity and clarity.

XP states that this frequent refactoring is only
possible when other practices are applied: pair
programming (for reducing risks in the
restructuring, see the quality section), and unit
testing (for testing if the refactoring did not alter
the behavior, see the quality section). As
discussed earlier, we already raised our
standards for readability and required testcode
bundling. Hence, the necessary practices for
refactoring were already there. To promote
refactoring, we motivated the developers by
explaining the advantages of refactoring and by
teaching them appropriate techniques.

Initially, there was some concern in the
company about interface changes through
refactoring. Changing the interface puts
component users in the difficult situation where
they have to decide if they need to start using
the improved component and change their code
accordingly. However, the goal of refactoring is
not to change the behavior, hence the chance
that an interface changes during refactoring is
small. If it does occur, for example to make the
interface more elegant, there are ways around
this problem, by adding a new interface when
changing it, while still supporting the previous
one. How easy this is, depends on the used
middleware (if any). When COM or C++ is
used, our standard is to create a new interface
and implement the old interface with it.

4 Insufficient quality

Component quality is of course important
because it not only pays off in the current
project, but also in future projects. According to
XP, component quality is affected by several
combined practices, where pair programming,
unit testing and planning are the most
important. Furthermore, software quality is
highly related to software adaptability (see
previous section), because the risk of
introducing a fault is by definition smaller in
case of high adaptability; changes to software
that is not fully understood are likely to cause
problems.

4.1 Pair programming

'Pair programming' means that two
programmers, in the same role, sit behind one
workstation. This approach increases quality
because one person is programming while the
other is observing and providing immediate
feedback.

At first, pair programming seemed not very
useful to us, especially to our management,
until we realized we were already doing it
successfully in several cases - mostly complex
jobs or jobs under high time pressure.
Currently, we are applying pair programming
more and more. Prototyping jobs or other
projects with reduced complexity and risk are
still done by a single programmer. Whenever
there is doubt we perform peer review of code
changes. By doing so we are learning when to
decide to program in pairs and when not.

4.2 Unit testing

XP's states that a piece of software should
always have automatic test tools, created by
the developer of the software, as a first task –
before any component code is written. Apart
from serving as sample code / documentation
this testcode increases quality because:

 Every time a component is changed, the
testcode can be used to test if quality is
maintained.

 The software module is tested in its full
functionality instead of testing it inside the
an application, which tests all features of
the application but not necessarily of its
modules. For this reason, unit tests improve
component quality in generic situations,
outside of the current projects scope.

 The programmers themselves are
responsible for testing their software. This is

contrary to the common belief that it's better
to let others do the testing because other
people think different and might think of
situations where the software fails. Letting
developers create the testcode themselves
has several advantages: the developer has
better understanding of functionality
boundaries and critical sections that need to
be tested. That way the developer feels
more responsibility: instead of just releasing
the software and let the testers test it in all
kinds of circumstances, the developer is
forced to anticipate these circumstances in
advance (by writing the testcode) and
hence prevent bugs instead of fighting
them.

 Because programmers write testcode for
their own components first, they are forced
to take on the role of component user,
resulting in interfaces that are more
straightforward.

At Sentient, we adopted the unit testing
principles. However, testing is still done
manually in some user interface situations
because exact user interaction is hard to
simulate. In order to reduce the risk of oversight
we often apply pair programming when creating
unit tests - mostly by letting another developer
take a second look at the created testcode.

4.3 Planning

XP planning is a kind of timeboxing: time limits
are set for each element of the system, by the
developers themselves. Developers have the
best knowledge of what needs to be done, so it
is important that they learn to make time
estimates. Furthermore, the motivation to make
it in time is higher than when others impose a
deadline - they cannot blame somebody else
making a bad estimate.

In order to improve the estimation capabilities,
it's important to inform the programmers with
the actual time taken for each element. It is also
important to make the estimate elements small,
possibly by spitting up a process into
milestones.

Whenever a deadline is not going to be made,
XP stresses that secondary features should be
dropped instead of quality. At Sentient we have
been doing timebox planning by developers for
a long time, but unfortunately quality has often
been the victim of bad planning. Recently, we
have started making feature priority lists with
the customers, to be able to start with the most
important ones. Project leaders are now aware
that low-priority features have to be dropped as

soon as a schedule turns out to be too tight,
instead of rushing the completion.

5 Middleware complications

During the 7 years in which we have used our
middleware standard COM we learned about its
merits and its shortcomings. We realized these
shortcomings were going to be a real problem if
we would create a typical CBD component
library: a database of components that can be
used to build systems using a standard
middleware solution, and therefore are required
to have a middleware-compliant interface (e.g.
DCOM, CORBA). This technology allows using
any type of components from anywhere, which
is great - but there's a price to pay:

 Implementing the middleware interface
takes time. Several programming
languages are used within Sentient and
therefore components typically start out as
native classes or sets of routines.
Converting a class to a COM component is
easy for just a few languages (e.g. Visual
Basic).

 The middleware interface is typically less
powerful than a native interface. For
example the possibilities with C++
interfaces are much greater than with a
COM interface [3]. A further restriction is the
way the component is going to be used - for
example: memory pointers are out of the
question if the component is going to be
used by a Visual Basic tool or if it has to run
out of process [3].

 Middleware interfacing is often slower,
because of two reasons: 1) virtual functions
are used [3], which means a small
performance penalty, and 2) data often has
to be communicated in less efficient ways
because of the less powerful interface. For
example: as mentioned above, memory
pointers cannot be used in some cases, so
a datastructure has to be communicated
using a COM object for each element in the
datastructure, which introduces memory
and processor overhead.

 Dynamic linking creates versioning
problems

5.1 Versioning problems with dynamic
linking

Dynamic linking means that components are
used in an opportunistic way: at the moment it
is needed, the software actively requests a link

to a component from the operating system or
middleware. In static linking, the component is
embedded into the software.

The advantage of dynamic linking is that
component does not have to be loaded more
than once on a machine, which is especially
useful for system components. For other
components, dynamic linking has shown to
have many disadvantages, in our practice.

The problem with dynamic linking is that you
don't know if you get the same component with
which you developed the software, causing the
following problems:

 Upward version incompatibility of
components: Often, only one version of a
component can be present on a machine -
preferably a recent version. The problem is
that not all components have been tested
with that version, which may cause failures.
This happened many times at Sentient, and
not just with our own software.

 Clutter of dependent components:
Sometimes component versions have
different identities (filenames), mainly
because of the compatibility problem
mentioned. That way, every component is
able to load the exact component version it
needs. This results in more than one
version of the same system software loaded
in memory, causing performance problems.

The solution to this problem, called side-by-side
installation, is to bundle software with the
components of the exact same version it was
created with, and make sure they stay on the
system. In COM this would mean forcing the
component to have a unique component
identity (classID, progID and filename), and
storing it in the same location on the file system
as the main software, instead of a system
location. Microsoft has decided to support this
kind of installation in their new operating
systems (Windows 2000, Windows 98SE).

By doing so, the advantages of dynamic linking
are taken away and static linking becomes a
more obvious option. Furthermore, the
middleware component administration has to
store much more component references, which
can reduce performance.

These are the biggest problems Sentient has
experienced with third party components,
especially because the side-by-side installation
is very hard to apply on binary components.
That is why we decided to focus more on open
source third party components, which are
unfortunately still uncommon.

5.2 Our solution

Because of the discussed middleware
complications, we have decided to follow the
XP principle 'Build what you need and nothing
more', when it comes to component interfaces.
This means that components keep their native
form and can be published in the library as
such. Therefore, some of our components are
C-libraries, or Prolog procedure code, which are
not accessible from other languages. The
component can always get a middleware
interface later, when it actually turns out to be
reusable in a project written in a different
language or on another platform. This also
decreases the pressure on creating
components - extra effort is postponed to the
project that is going to reuse it.

Because most component library systems
assume a standard interface form, we had to
create our own library system, based on a file
system database with the following component
types:

Source code procedures/ classes

 C libraries

 Windows DLL's

 COM DLL's

 COM controls (OCX)

 COM EXE's

6 Small component production

Our component library did not grow as much as
we had hoped for because of the following
reasons:

Publishing a component required the developer
to take responsibility for maintaining it, creating
stress and consuming time

A library component required extra effort in
documentation

A library component had to be extended with
features by anticipating the generic purpose.
Such features are not needed in the current
project and therefore put an unanticipated
pressure on it.

Reusable elements were hard to extract from
our software structures, in which clean design
had been eliminated by applying change after
change without restructuring.

6.1 Our solution

By introducing collective code ownership (see
above) we took away the pressure of being
responsible for all component changes as a
component creator.

By increasing our adaptability standards (see
above), the documentation requirements of a
library component became the same as for any
other piece of software; hence the second
obstacle for publishing a component was
removed.

Extreme Programming assumes 'you aren't
going to need it' when it comes to anticipating
future requirements. In contrast, component
based development dictates that a full-featured
component should be produced, by
generalizing the current component
requirements. We recently adopted the XP
principle to build components exactly how they
are needed and nothing more. By doing so, the
developer can focus on what is important and
does not have to create extra features, with the
risk of it being unneeded after all or not meeting
future requirements. We already had decided to
apply this principle to interface standards (see
above). By not forcing the developer to do
anything outside the scope of the current
project, we took away the third obstacle of
publishing a component.

At first, there was some resistance within the
company against this new approach because it
was expected to result in rigid components.
This opposition however, turned out to be
unjust given the fact that software always needs
to have some flexibility in order to cope with
changes, even for the current project.
Furthermore, if the project’s goal is to deliver a
flexible system, flexibility is part of the
requirements and consequently will be
implemented. The idea is to not make it more
flexible than specified

By taking away the extra effort needed for
publishing a component, there is no more
interference in a project when it has a
component spin-off, apart from some small
administrative work. Modifications that might be
necessary for reuse are made later, in the
budget of the appropriate project, relying on the
adaptability and code clarity, established
through XP principles.

These measures have resulted in a higher
component production already, although it is
too early to tell if it is significant. Still, running
projects are already less bothered whenever a
components are created from them.

6.2 Creating components through
refactoring

By frequent refactoring we also expect to
increase component production because many
refactoring practices focus on isolating reusable
elements. The following refactoring methods
generate reusable components from software:

Inheritance refactoring: 2 classes that
implement similar behavior are made to use
one shared superclass. Chances are higher
that this superclass can be reused in other
software, simply because its functionality is
more abstract than its subclasses.

Composition refactoring: one class
implementing two responsibilities that are not
related very much, is refactored into two
different classes. Creating smaller classes does
not make the current system lighter, but it
improves reusability because smaller, more
lightweight parts can be reused.

7 Insufficient communication

Often, as was the case at Sentient, a software
development organization is separated into
groups (e.g. departments, rooms, offices,
product lines), each with its own subculture
(standards, values, technology). One of the
goals of Component Based Development is to
increase the reuse of software within an
organization. Bringing subcultures together is
essential for that reuse to succeed, in order to
understand each other's components and
documentation.

Within Sentient, many of the process
improvement efforts are focused on improving
communication, mostly through the use of tools
such as electronic discussion groups,
requirement and change management,
automatic change notification, a searchable
knowledgebase and messaging tools. Other
improvements have been the development of
unified terminology, documentation rules and
coding standards.

Because of the importance of code as a
communication means, we developed a
standard for every language used, as well as a
standard for commenting code. We configured
a commercial reporting tool to use these
comment templates to create hypertext
manuals of the code. These manuals are
directly available from the development
environment, in a context sensitive way. There
is no other code-documentation than the code
and its comments, just as XP prescribes.

For components, there are two kinds of
documentation: for the component developer
and for the component user. The latter carries a
special tag in Sentient's comment standard, so
two documentation reports can be generated:
one for the developer, and one for the user,
containing just an explanation of the public
interface.

8 Conclusions

This paper has shown how we dealt with our
problems with Component Based Development
by applying Extreme Programming principles.
These principles are very well suited for
components because they address the relevant
key issues: high quality payoff, and long time
adaptability. The results are as follows:

 By introducing pair programming, unit
testing, frequent refactoring and timebox
planning, component adaptability and
quality increased.

 Collective code ownership was introduced
in order to be able to change a library
component quickly and reduce pressure on
component creators.

 By building nothing more than exactly
needed (keep it simple), unnecessary
middleware complications and extra stress
on the developer and the project were
eliminated. Traditional software design and
especially CBD tell us to plan for the future,
to design for reuse. In contrast, XP says to
solve today's problem and trust your ability
to add or change features in the future,
when necessary.

 Because of collective code ownership, high
adaptability and keeping it simple, most of
the reasons for not publishing a component
have been removed

 Through constant refactoring, more new
components are being created.

There is still a great deal of legacy code that is
not very adaptable within Sentient. We treat this
code differently than we treat the new
sourcecode. Ownership for example is
restricted. However, we are constantly
refactoring our legacy systems, increasing
adaptability, towards collective ownership.

9 References

[1] K. Beck, Extreme programming explained,
Addison-Wesley, 1999

[2] M.Fowler et al., Refactoring: Improving the
design of existing code, Addison-Wesley, 1999

[3] D. Kruglinski et al., "Programming Microsoft
Visual C++, fifth edition", Microsoft press, 1998.

10 About the author

Rob van der Veer is head of software
development at Sentient Machine Research in
Amsterdam, The Netherlands.

He studied computer science at the University
of Twente and graduated in 1993 with a
research project on hybrid artificial intelligence
– combining AI techniques from different
disciplines. This research was performed at
Sentient Machine Research and resulted in
technology that has become the heart of
Sentient’s data mining toolset – DataDetective.

e-mail: rob@smr.nl

Company website: http://www.smr.nl

mailto:rob@smr.nl

